Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR.
نویسندگان
چکیده
A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four different genotypes of phlD+ P. fluorescens. Using purified genomic DNA and genomic DNA extracted from washes of wheat roots spiked with bacteria, standard curves relating the threshold cycles (C(T)s) and copies of the phlD gene were generated for P. fluorescens strains belonging to genotypes A (Pf-5), B (Q2-87), D (Q8r1-96 and FTAD1R34), and I (FTAD1R36). The detection limits of the optimized real-time PCR assay were 60 to 600 fg (8 to 80 CFU) for genomic DNA isolated from pure cultures of P. fluorescens and 600 fg to 6.0 pg (80 to 800 CFU, corresponding to log 4 to 5 phlD+ strain CFU/rhizosphere) for bacterial DNA extracted from plant root washes. The real-time PCR assay was utilized to quantify phlD+ pseudomonads in the wheat rhizosphere. Regression analysis of population densities detected by real-time PCR and by a previously described phlD-specific PCR-based dilution endpoint assay indicated a significant linear relationship (P = 0.0016, r2 = 0.2). Validation of real-time PCR assays with environmental samples was performed with two different soils and demonstrated the detection of more than one genotype in Quincy take-all decline soil. The greatest advantage of the developed real-time PCR is culture independence, which allows determination of population densities and the genotype composition of 2,4-DAPG producers directly from the plant rhizospheres and soil.
منابع مشابه
Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants.
Indigenous populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent Pseudomonas spp. that occur naturally in suppressive soils are an enormous resource for improving biological control of plant diseases. Over 300 isolates of 2,4-DAPG-producing fluorescent Pseudomonas spp. were isolated from the rhizosphere of pea plants grown in soils that had undergone pea or wheat monocultur...
متن کاملIdentification of differences in genome content among phlD-positive Pseudomonas fluorescens strains by using PCR-based subtractive hybridization.
Certain 2,4-diacetylphloroglucinol-producing strains of Pseudomonas fluorescens colonize roots and suppress soilborne diseases more effectively than others from which they are otherwise phenotypically almost indistinguishable. We recovered DNA fragments present in the superior colonizer P. fluorescens Q8r1-96 but not in the less rhizosphere-competent strain Q2-87. Of the open reading frames in ...
متن کاملComparison of Three Methods for Monitoring Populations of Different Genotypes of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere.
ABSTRACT Pseudomonas fluorescens strains producing the antibiotic 2,4-diacetylphloroglucinol (DAPG) have biocontrol activity against a broad spectrum of root and seedling diseases. In this study, we determined the effect of genotype on the ability to isolate and quantify introduced 2,4-DAPG producers from the rhizosphere of wheat using three different methods: traditional dilution plating on se...
متن کاملCarbon fractions in the rhizosphere of pea inoculated with 2,4 diacetylphloroglucinol producing and non-producing Pseudomonas fluorescens
The aim of this work was to determine the effect of wild type and functionally modified Pseudomonas fluorescens strains on C fractions in the rhizosphere of pea. The lacZY marked F113 strain produces the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control. The modified strain of F113 was repressed in production of DAPG, creating the DAPG negative strain F113 G22. The F1...
متن کاملDistribution of 2,4-Diacetylphloroglucinol Biosynthetic Genes among the Pseudomonas spp. Reveals Unexpected Polyphyletism
Fluorescent pseudomonads protecting plant roots from phytopathogens by producing 2,4-diacetylphloroglucinol (DAPG) are considered to form a monophyletic lineage comprised of DAPG+Pseudomonas strains in the "P. corrugata" and "P. protegens" subgroups of the "Pseudomonas fluorescens" group. However, DAPG production ability has not been investigated for many species of these two subgroups, and whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 17 شماره
صفحات -
تاریخ انتشار 2007